
research papers

408 doi:10.1107/S010876731300768X Acta Cryst. (2013). A69, 408–412

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 31 January 2013

Accepted 20 March 2013

# 2013 International Union of Crystallography

Printed in Singapore – all rights reserved

A new interpretation of the rA parameter

B. Carrozzini, G. L. Cascarano, C. Giacovazzo* and A. Mazzone

Istituto di Cristallografia, CNR, Via Amendola 122/o, Bari, Italy. Correspondence e-mail:

carmelo.giacovazzo@ic.cnr.it

A new study of the �A parameter has been undertaken to understand its

behaviour when the diffraction amplitude distributions are far from the standard

Wilson distributions. The study has led to the formulation of a new statistical

interpretation of �A, expressed in terms of a correlation factor. The new

formulas allow a more accurate use of �A in electron-density modification

procedures.

1. Notation

N, Np, number of atoms in the unit cell of the target and of the

model structure, respectively. Usually Np � N, but it may also

be Np > N.

fj, j = 1, . . . , N, atomic scattering factors for the target struc-

ture (thermal factor included).

F ¼
PN

j¼1 fj expð2�ihrjÞ ¼ jFj expði’Þ, structure factor of the

target structure.

Fp ¼
PNp

j¼1 fj expð2�ihr0jÞ ¼ jFpj expði’pÞ, structure factor of

the model structure. The atomic positions of the model

structure are related to those of the target by the relation r0j = rj

+ �rj.

�N ¼
PN

j¼1 f 2
j ;�Np

¼
PNp

j¼1 f 2
j .

E = F=ð�NÞ
1=2 = R expði’Þ, Ep = F=ð�Np

Þ
1=2 = Rpexpði’pÞ,

normalized structure factors of F and Fp, respectively. R and

Rp are the moduli of E and Ep, respectively.

D = hcos 2�h�ri, h�ri is the average vectorial difference

between the Np positional vectors of the model atoms and the

corresponding vectors in the target structure.

�A ¼ Dð�Np
=�NÞ

1=2 or �A ¼ Dð�N=�Np
Þ

1=2
ð1Þ

according to whether �Np
is smaller or larger than �N .

�2
R = hj�j2i=�N , hj�j2i is the measurement error and �2

R is its

normalized form.

e ¼ 1þ �2
R.

Ii(X), modified Bessel function of order i.

Di(X) = Ii(X)/I0(X).

EDM, electron-density modification.

Paper I, Burla, Giacovazzo et al. (2011).

2. Introduction

Hauptman (1982), in his theory integrating direct-methods

techniques with isomorphous replacement and in accordance

with Sim’s (1959) assumptions, supposed that the atomic

positions rj for the two isomorphous structures were the same:

fj are the scattering factors in the target structure, gj in the

model structure. When gj = 0, no atom is in the jth position.

Hauptman’s theory establishes that

hR2R2
pi � hR

2ihR2
pi

ðhR4i � hR2i
2
Þ

1=2
ðhR4

pi � hR
2
pi

2
Þ

1=2
¼ �2;

where

�2
¼
ð
P

j fjgjÞ
2

ð
P

j f 2
j Þð
P

j g2
j Þ
:

If fj = gj, unless gj = 0 when no atom is in the position rj, then

�2
¼ �p=�N :

Luzzati (1952) started the study of isomorphous structures,

where corresponding atoms show a misfit in the atomic posi-

tions. The corresponding P(E, Ep) distribution was provided

by Srinivasan & Ramachandran (1965), who greatly enlarged

the concept of model and target structure and started the

study of the parameter

�2
A ¼ D2�p=�N:

In accordance with Srinivasan and Ramachandran, in our

approach the atomic positions in the target and in the model

may differ by �rj.

The role of �A in modern phasing techniques rapidly

increased, as the following examples suggest:

(a) Read (1986) used the likelihood function given by Lunin

& Urzhumtsev (1984) to provide the probability of the

observed structure factors when a model structure is available.

The corresponding weight is

m ¼ D1ðXÞ or m ¼ tanhðX=2Þ ð2Þ

with

X ¼ 2�ARRp=ð1� �
2
AÞ ð3Þ

according to whether the crystal is acentric or centric.

(b) Equations (2) were generalized by Caliandro et al.

(2005) to take into account the measurement error; they are

still valid but X should be modified into

X ¼ 2�ARRp=ðe� �
2
AÞ: ð4Þ

(c) The equations (2)–(4) are widely used in EDM proce-

dures.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5026&bbid=BB24
http://crossmark.crossref.org/dialog/?doi=10.1107/S010876731300768X&domain=pdf&date_stamp=2013-05-15


(d) The accurate �A estimate is crucial for the VLD

method (Burla, Carrozzini et al., 2011; Burla, Carrozzini,

Cascarano, Giacovazzo & Polidori, 2012), a new ab initio

phasing approach using the properties of the Fourier trans-

form for recovering the correct structure from a random

model.

(e) More recently, the parameter has been involved in a

formula estimating triplet phase invariants given a model

structure (Burla, Carrozzini, Cascarano, Comunale et al.,

2012).

( f) In computer programs refining macromolecular struc-

tures by maximum-likelihood methods (e.g. see REFMAC by

Murshudov et al., 1997), �A may be estimated from reflections

not included in the refinement of atomic parameters and is

also used for restoring unmeasured reflections in electron-

density syntheses.

In order to estimate �A, the measured reflections are

partitioned in resolution shells (indeed �A is a resolution-

dependent parameter) and for each shell the mixed moments

hR2R2
pi are calculated, from which

�2
A ¼ ðhR

2R2
pi � eÞ ð5aÞ

or

�2
A ¼

1
2 ðhR

2R2
pi � eÞ ð5bÞ

for acentric or centric crystals, respectively.

To reduce the effects of the experimental structure-factor

distributions, when not coincident with Wilson distributions, in

practical applications [e.g. in the program SIGMAA by Read

(1986)] it is usual to renormalize the structure factors per shell.

This is equivalent to using

�2
A ¼

hR2R2
pi

hR2ihR2
pi
� e

� �
and �2

A ¼
1

2

hR2R2
pi

hR2ihR2
pi
� e

� �
ð6Þ

for acentric and centric crystals, respectively. In terms of

structure factors the above equations may be rewritten as

�2
A ¼

hjFFpj
2
i

hjFj2ihjFpj
2
i
� e

 !
and �2

A ¼
1

2

hjFFpj
2
i

hjFj2ihjFpj
2
i
� e

 !
;

respectively.

Applying equations (6) instead of equations (5a) and (5b)

does not have a theoretical basis, but it helps in practice to

reduce the effects of the non-Wilsonian amplitude distribu-

tions. It is, however, obvious that the renormalization via the

moments of order two used in equations (6) cannot obviate

the distortions of the �A estimate generated by the non-

Wilsonian nature of the actual distributions (indeed, by defi-

nition, each distribution is defined by the full set of its

moments, not only by moments of order two).

The above-described state of the art is therefore not satis-

factory. Indeed:

(i) In direct space the definition of equation (1) exactly

defines the �A parameter in terms of the incompleteness of the

model (say the ratio �Np
=�N) and of the similarity between

the model and the target structure (say via the D term). In

reciprocal space (the space in which �A is estimated) a

statistical interpretation of �A is still not available.

(ii) The mathematical relationships established through

equations (2)–(5a),(5b) are no longer valid if the local and/or

the global amplitude distribution do not fit the Wilson statis-

tics. As stated before, the renormalization via moments of

order two cannot capture the essential features of the non-

Wilsonian distributions; as a consequence, overestimation or

underestimation of the �A values may occur, with possible loss

of efficiency of the EDM procedures. It often occurs that the

reciprocal-space averages by means of which �A is estimated

provide values larger than unity.

A new study is therefore useful to estimate �A when the

diffraction amplitude distributions are far from the Wilson

standards (for a different approach see paper I). This is one of

the two purposes of this paper: the second, correlated with the

first, is to identify a new statistical interpretation of �A, char-

acterized by a more general mathematical expression.

3. A new rA interpretation

In order to make the following calculations immediately

readable, let us assume that e = 1 (this approximation is

practically satisfied for all the largest R values).

From the classical Srinivasan and Ramachandran acentric

distribution the following marginal distribution is obtained by

standard techniques,

PðR;RpÞ ¼
4

ð1� �2
AÞ

RRp exp �
1

ð1� �2
AÞ
½R2 þ R2

p�

� �
I0 X½ �;

ð7Þ

which may be used to calculate the joint moment

hR2R2
pi ¼

R1
0

R2R2
p dR dRp: ð8Þ

It is easily shown that, if the integration operations are first

made over Rp and then over R,

hR2R2
pi ¼ ð1� �

2
AÞ
R1
0

R3 expð�R2Þ dRþ �2
A

R1
0

R5 expð�R2Þ dR

¼ ð1� �2
AÞhR

2
i þ �2

AhR
4
i ð9Þ

is obtained, from which

�2
A ¼
hR2R2

pi � hR
2i

ðhR4i � hR2iÞ
: ð10Þ

If we replace in equation (10) the fourth- and the second-

order marginal moments by the Wilson expected values (say

hR2
i = 1 and hR4

i = 2), then the relation (5a) is obtained.

Let us now integrate equation (8) first over R and then over

Rp; we obtain

hR2R2
pi ¼ ð1� �

2
AÞ
R1
0

R3
p expð�R2

pÞ dRþ �2
A

R1
0

R5
p expð�R5

pÞ dRp

from which
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�2
A ¼
hR2R2

pi � hR
2
pi

ðhR4
pi � hR

2
piÞ

: ð11Þ

Again, equation (11) reduces to equation (5a) if the marginal

moments of order two and four are replaced by their Wilson

expected values.

Relations identical to equations (10) and (11) are obtained

when the centric distribution P(R, Rp) is taken into account.

From equations (10) and (11) the relation (5b) is obtained by

replacing the moments of order two and four by the Wilson

expected values hR2
i = 1 and hR4

i = 3.

The above results suggest the following conclusions:

(i) If R and Rp obey the Wilson distribution, the order of

integration in equation (8) is not relevant and the relation-

ships in equations (5a) and (5b) are obtained.

(ii) If R and Rp do not obey the Wilson distribution, two

different relationships are obtained from equation (8) [say

equations (10) and (11)], according to the order of integration.

The asymmetry in the results is the effect of a hypothesis

which has been introduced in the calculations but which was

not in the original bivariate distribution.

(iii) The moments of order four are necessarily involved

when the integration is performed. They do not explicitly

appear because they are replaced by the Wilsonian values:

they should be explicitly considered in the case of non-

Wilsonian distributions.

Unfortunately, the observed and calculated amplitude

distributions are often non-Wilsonian; in this case the alge-

braic form of equations (5a) and (5b) does not hold anymore

because it will depend on the specific experimental distribu-

tion.

It may then be useful to replace equations (5a) and (5b) by

a more general relation which: (i) makes use of the marginal

moments hR4
i and hR4

pi, as suggested by equations (10) and

(11); (ii) reduces to equations (5a) and (5b) when the observed

and calculated structure-factor distributions are Wilson-like;

(iii) always provides estimates in the interval (0, 1). Our

proposal is the following: �2
A is nothing but the correlation

factor C between the R2 and the R2
p sets:

�2
A ¼ CðR2;R2

pÞ ¼
hR2R2

pi � hR
2ihR2

pi

ðhR4i � hR2i
2
Þ

1=2
ðhR4

pi � hR
2
pi

2
Þ

1=2
: ð12Þ

We observe:

(a) �2
A, as defined in direct space, always lies in the interval

(0, 1). The reciprocal-space estimates [equations (5a) and

(5b)] may often be outside the interval (0, 1), against the

definition of equation (1). Equation (12) always guarantees

the correct interval.

(b) Equation (12) does not change with the centric or

acentric nature of the crystal, and reduces to equation (5a) or

(5b) if the structure factor satisfies the corresponding Wilson

distribution; it is sufficient to replace the marginal moments by

their expected Wilson values. That is very useful when the

moments are calculated from sets containing general and

symmetry-restricted reflections.

(c) Rescaling of the observed and/or the calculated ampli-

tudes shell per shell, as described by equation (6), is no longer

necessary because the correlation coefficient is scale inde-

pendent.

(d) When D = 1 (that is when �rj = 0 for j = 1, . . . , Np) our

result coincides with the Hauptman (1982) formula reported

in the first lines of x2.

The new statistical interpretation of �2
A has been obtained

by considering the mixed moment hR2R2
pi, but it may be shown

that it has a more general validity. Let us consider, for

example, the moment hRRpi: if both R and Rp satisfy the

acentric Wilson distribution, then (Caliandro et al., 2005)

hRRpi ¼
�

4 1F1

�1

2
;
�1

2
; 1; �2

A

� �
; ð13Þ

where 1F1 is the confluent hypergeometric function. According

to paper I, equation (13) may be approximated by

RRp

� �
¼
�

4
e1=2 1þ

�

12

�2
A

e

� �
;

from which, after simple calculations,

�2
A ¼ hRRpi �

�

4

� 	

1�

�

4

� 	
ð14Þ

is obtained. Since hRi = hRpi = (�)1/2/2, equation (14) may be

rewritten in terms of a correlation coefficient:

�2
A ¼ CðR;RpÞ ¼

hRRpi � hRihRpi

ðhR2i � hRi2Þ
1=2
ðhR2

pi � hRpi
2
Þ

1=2
: ð15Þ

It may be argued that �2
A may be estimated via any moment

hRnRn
pi in the form of correlation coefficients, and that from

each moment a specific estimate arises, correlated but not

identical with the others.

Does the statistical interpretation of �2
A as a correlation

factor have a counterpart in direct space? In other words, can

�2
A be interpreted in terms of correlation between the electron

density of the target and of the model structure? In particular,

does C(R2, R2
p) coincide with the correlation C(�, �p) given by

Cð�; �pÞ ¼
h��pi � h�ih�pi

ðh�2i � h�i2Þ
1=2
ðh�2

pi � h�pi
2
Þ

1=2
? ð16Þ

Since the usual electron densities do not contain the constant

coefficient, the definition of equation (16) reduces to

Cð�; �pÞ ¼
h��pi

ðh�2iÞ
1=2
ðh�2

piÞ
1=2
: ð17Þ

In order to estimate such correlation, we need to calculate the

integral Z
V

�ðrÞ�pðrÞ dr ¼
1

V

X
h

jFhFphj cosð’h � ’phÞ: ð18Þ

In the absence of information on the target phases we can

approximate equation (18) by

research papers
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Z
V

�ðrÞ�pðrÞ dr ’
1

V

X
h

jFhFphjD1ðXhÞ: ð19Þ

Using the well known Parseval relationZ
V

�2ðrÞ dr ¼
1

V

X
h

jFhj
2

leads to

Cð�; �pÞ ¼

P
h jFhFphjD1ðXhÞ

ð
P

h jFhj
2
Þ

1=2
ð
P

h jFphj
2
Þ

1=2

or, in terms of normalized structure factors, to

Cð�; �pÞ ¼ hRhRphD1ðXhÞi: ð20Þ

The above results show that �2
A cannot be interpreted as the

correlation between the electron-density maps of the target

and of the model structure. However, it influences such a

correlation: large values of h�2
Ai imply large C(�, �p) values.

4. Experimental tests

The observed and the calculated amplitude distributions do

not always comply with the standard Wilson distributions.

Among the several structural reasons which lead to distorted

distributions we quote: (i) some heavy atoms are in special

positions; (ii) groups of atoms have a centric (in acentric

structures) or a hypercentric arrangement; (iii) in acentric

structures groups of atoms are shifted by small displacements

from positions compatible with the presence of an inversion

centre; (iv) pseudo-translational symmetry is present.

While the last pseudo-symmetry type may be assessed by

checking the statistics of the observed amplitudes (Cascarano

et al., 1985, 1987), the others cannot be easily diagnosed if a

molecular model is not available.

The general effect of the pseudo-symmetry on the ampli-

tude statistics is the increase of the high-order marginal

moments (e.g. hR4
i, hR6

i, . . . ) and, often, of the mixed

moments hRnRn
pi: they become larger than expected from

the Wilson distributions. The rationale is the following: the

pseudo-symmetries divide the reflections into groups, each

group with its own value of h|F|2i. In the absence of any

information on the pseudo-symmetry, the observed and the

calculated amplitudes are normalized by dividing them by the

overall expected scattering power at the given resolution shell

[say (�N)1/2 and (�Np
)1/2, respectively]; as a result, some

groups of reflections will show large average values of hR2
i

and other groups will show smaller values of hR2
i. This

behaviour statistically leads to increased values of the higher-

order moments hRn
i with n > 2 and, often, of the mixed

moments hRnRn
pi.

In general, pseudo-symmetry effects lead to overestimated

�A values. Luckily, the interpretation of �2
A as a correlation

factor allows one to reduce such an effect by using the

moments of order four at the denominator of equations (12)

and (15), rather than the Wilson expected values.

In order to confirm the above statements we have consid-

ered eight test structures quoted in Table 1, six of which are

affected by pseudo-translational symmetry; for all of them the

experimental moment hR4
i is significantly larger than two. In

the table the nature of the pseudo-translational symmetry,

when present [say, the pseudo-translational vector u and the

percentage of electron density (%) satisfying it], is reported.

While hR4
i moments are close to centric of hypercentric

values, the hRi moments do not show strong deviations from

the Wilson acentric values. The only exception is the protein

with PDB (Protein Data Bank) code 2hyw, for which hRi is

close to the centric values.

To compare the �A estimates provided by equations (6),

(12) and (15), the phase error may be monitored against the

calculated �A values during the full phasing process. Proteins

with PDB codes 1ick and 1nkd are particularly indicated for

such a purpose because ab initio phasing techniques may be

successfully applied to them [i.e., a Patterson deconvolution

approach followed by EDM procedures, as implemented in

SIR2011; Burla, Caliandro et al. (2012)]. In this case the

behaviour of the �A estimates provided by equations (6), (12)

and (15) may be observed for a wide interval of the phase

error. We calculated the �A values during the EDM cycles: the

error varies from about 80� (typical when the heavy atoms are

not so heavy, like Cl or S) up to about 25� (typical for such

small high-resolution proteins).

The �A trend for proteins with PDB codes 1ick and 1nkd is

shown in Figs. 1 and 2, respectively. We notice:

(i) The �A parameter is in general overestimated. This is an

intrinsic feature of EDM procedures, because the calculated

structure factors are obtained by modification and inversion of

observed electron-density maps.

(ii) The largest overestimation is obtained by using equa-

tion (6), followed by equation (15) and by equation (12) in

that order, in agreement with the theoretical expectations.

The above trend is confirmed for all the test structures. As a

consequence, it may be guessed that for structures with a high

hR4
i moment, the �A parameter is expected to attain values

close to unity even when the phase error is significantly far
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Table 1
Test structures.

For each structure the PDB code, the space group (SG), the experimental data
resolution (RES) and the moments hRi and hR4

i are given. If pseudo-
symmetry is present, the pseudo-translational vector is characterized via the
pseudo-translation vector u and the percentage of electron density satisfying
the pseudo-translation (%).

PDB SG RES hRi hR4i u % Reference

1ick P212121 0.95 0.87 2.39 (a)
1nkd C2 1.1 0.85 2.68 (b)
1j6s P4212 1.40 0.84 2.92 c/2 25 (c)
1dy5 P21 0.87 0.87 2.33 a/2 55 (d)
1lys P21 1.72 0.90 2.15 (a+c)/2 54 (e)
2hyw P21 2.1 0.79 3.54 (b+c)/2 89 (f)
1yxa P212121 2.1 0.86 2.44 a/2 20 (g)
2p0g P3121 2.3 0.83 2.78 c/2 75 (h)

References: (a) Dauter & Adamiak (2001); (b) Vlassi et al. (1998); (c) Pan et al. (2003);
(d) Esposito et al. (2000); (e) Harata (1994); (f) Shao et al. (2006); (g) Horvath et al.
(2013); (h) Benach et al. (2013).



from zero. This behaviour would make EDM procedures less

effective.

A different trend is in general observed for structures with

Wilsonian hR4
imoments. An example is shown in Fig. 3 for the

protein with PDB code 1a0m [Hu et al. (1998), space group I4,

resolution 1.09 Å], for which hR4
i = 2.02; the increase of the �A

parameter at decreasing values of the phase error is progres-

sive and gradual. �A attains values close to unity only when the

phase error is significantly small.

We thank Caterina Chiarella for the technical support.
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Figure 3
1a0m. The �A estimates versus the phase error |�’| as obtained by
SIR2011 when ab initio Patterson deconvolution techniques are applied.

Figure 1
1ick. The �A estimates versus the phase error |�’| as obtained by SIR2011
when ab initio Patterson deconvolution techniques are applied.

Figure 2
1nkd. The �A estimates versus the phase error |�’| as obtained by
SIR2011 when ab initio Patterson deconvolution techniques are applied.
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